1,059 research outputs found

    Strange Expectations and Simultaneous Cores

    Get PDF
    International audienceLet gcd(a, b) = 1. J. Olsson and D. Stanton proved that the maximum number of boxes in a simultaneous (a, b)-core is (a2 −1)(b2 −1) 24, and showed that this maximum is achieved by a unique core. P. Johnson combined Ehrhart theory with the polynomial method to prove D. Armstrong's conjecture that the expected number of boxes in a simultaneous (a, b)-core is (a−1)(b−1)(a+b+1) 24. We apply P. Johnson's method to compute the variance and third moment. By extending the definitions of “simultaneous cores” and “number of boxes” to affine Weyl groups, we give uniform generalizations of these formulae to simply-laced affine types. We further explain the appearance of the number 24 using the “strange formula” of H. Freudenthal and H. de Vries

    Type C parking functions and a zeta map

    Get PDF
    We introduce type C parking functions, encoded as vertically labelled lattice paths and endowed with a statistic dinv'. We define a bijection from type C parking functions to regions of the Shi arrangement of type C, encoded as diagonally labelled ballot paths and endowed with a natural statistic area'. This bijection is a natural analogue of the zeta map of Haglund and Loehr and maps dinv' to area'. We give three different descriptions of it.Comment: 12 page

    Strange Expectations in Affine Weyl Groups

    Full text link
    Our main result is a generalization, to all affine Weyl groups, of P. Johnson's proof of D. Armstrong's conjecture for the expected number of boxes in a simultaneous core. This extends earlier results by the second and third authors in simply-laced type. We do this by modifying and refining the appropriate notion of the "size" of a simultaneous core. In addition, we provide combinatorial core-like models for the coroot lattices in classical type and type G2G_2.Comment: 22 pages, 5 figure
    • 

    corecore